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The weak disorder expansion for a random Schr6dinger equation with off- 
diagonal disorder in one dimension is studied. The invariant measure, the den- 
sity of states, and the Lyapunov exponent are computed. The most interesting 
feature in this model appears at the band center, where the differentiated density 
of states diverges, while the Lyapunov exponent vanishes. The invariant 
measure approaches an atomic measure concentrated on zero and infinity. The 
results extend previous work of Markos to all orders of perturbation theory. 

KEY WORDS:  Random Schr6dinger operators; density of states; Lyapunov 
exponent; invariant measure; perturbation expansion. 

1. I N T R O D U C T I O N  

In a recent paper, Bovier and Klein (2) investigated the weak disorder 
expansion for the one-dimensional  r andom Schr6dinger opera tor  

H =  - A  + 2 V  (1.1) 

where A is the off-diagonal part  of  the finite-difference Laplacian on L2(Z) 
and V is a diagonal  matrix whose diagonal  elements are independent iden- 
tically distributed (i.i.d.) r andom variables, Assuming the existence of  
moments  of all orders for the c o m m o n  distribution of  these r a n d o m  
variables, we showed that  the invariant  measure and hence the Lyapunov  
exponent  and the density of  states permit a perturbative expansion in 
powers of 2 with finite coefficients to all orders. Moreover ,  we showed that  
at energies E = 2 cos(n(p/q)) ,  where p and q are relatively prime integers, 
the (q-2)th coefficients in this expansion are discontinuous as functions of 
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646 Bovier 

E; this phenomenon of anomalies had previously been observed at E = 0 
and at E =  _+1 by several authors (refs. 4 and 7; see also ref. 8). 

In (1.1) the disorder is manifest in a random potential. In other physi- 
cal situations, the main source of randomness may be that the tunneling 
probabilities between potential wells depend on the atoms occupying the 
sites. This situation may be modeled by a Hamiltonian 

where 

H =  -A + 2J (1.2) 

i j if i - j = l  
Jo= , if j - i = l  )(1.3) 

otherwise 

As before, the v; are i.i.d, random variables, the distribution of which we 
assume to have moments of all orders. We also put 

Evi = O, Ev 2 = 1 

(We denote by E the expectation with respect to the distribution d# of 
the vi.) 

This model has been studied by Theodorou and Cohen (lz) and Roman 
and Wiecko, In) and more recently by Markos (s'9) and Campanino and 
Perez. (3) A closely related problem of a disordered chain of coupled har- 
monic oscillators was already studied by Dyson. (s) Markos (9) investigated 
the behavior of the density of states and the Lyapunov exponent near the 
band center (E= 0) in perturbation theory up to second order in 2, using 
essentially the techniques of Derrida and Gardner (a) developed in the study 
of the band center anomalies in the model (1.1). Markos finds: 

(i) The Lyapunov exponent y(E) vanishes like 1/ln E. 

(ii) The differentiated density of states n(E) diverges like 1/(E in 3 E). 

This is in agreement with the formulas of ref. 13 based on computa- 
tions of Dyson in a particular potential distribution, (5~ with the numerical 
results of ref. t l ,  and also with the rigorous bounds of ref. 3 (which, 
however, do not reproduce the exact nature of the singular behavior at 
E=0) .  

This interesting phenomenon deserves further careful investigation. In 
the present paper I extend the results of Markos in several directions: 

(i) I construct the perturbation expansion for the invariant measure 
to all orders and show that the above-mentioned behavior holds to all 
orders of perturbation theory. 
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(ii) I show that anomalies of the same type as in the random poten- 
tial model (1.1) appear in ( q - 2 ) t h  order of perturbation theory at energies 
E = 2 cos(re(p/q)). 

(iii) I study a model with both diagonal and off-diagonal disorder, 
and show that the presence of an arbitrarily small amount of diagonal 
disorder removes the singular behavior at E = 0. 

Before turning to the more specific computations, I add some com- 
ments on the physical interpretation of this phenomenon. Markos (9~ con- 
cludes that in spite of the vanishing of the Lyapunov exponent at E = 0, the 
electrons there remain exponentially localized. He bases his arguments on 
the divergence of what he calls "moments of the Lyapunov exponent." He 
seems to conclude that the Lyapunov exponent takes on different values in 
different realizations of the system, the value zero having zero probability. 

Theodorou and Cohen (13) claim, on the contrary, that extended states 
exist at the band center, since the localization length diverges, i.e., 7(0)= 0. 

Both conclusions seem to me somewhat premature. The argument of 
Markos is based in fact on a misconception regarding the nature of the 
quantities he computes. It seems worthwhile to clarify this point. I begin by 
recalling the definition of the Lyapunov exponent and the invariant (or 
stationary) measure. (For an extended treatment, see, e.g., the book by 
Bougerol and LacroixJ 1~) 

Let re(n) denote a solution of the Schr6dinger equation 

(HrE)(n)=Ere(n) (1.4) 

with initial conditions re(o),  rE(t).  The Lyapunov exponent y(E) is 
defined as 

y(E)= lim ltn ~ Pk 
n ~  oo F/ k = l  

(1.5) 

where Pk is the (random) transfer matrix associated with Eq. (1.4), i.e., 

re(n)  J \ r e ( n - I ) /  
(1.6) 

The subadditive ergodic theorem (see, e.g., ref. 10) implies that the 
limit in (1.5) exists and is independent of the realization of the disorder, for 
almost all realizations. In other words, 7(E) is self-averaging, 

E 7(E) = 7(E) (1.7) 



648 Bovier 

If the matrices Pn satisfy some irreducibility criteria (see, e.g., ref. 1), the 
Lyapunov exponent can also be expressed as 

7(E)=nlim _tin ~e(n) 
n 

1 (~ CE(k+ 1) 
= lim - /_., In (1.8) 

As I show in more detail later, the ratios x,-qle(n+ 1)/qJe(n) satisfy 
a random recursion relation of the form x,  = T o,(x,_ 1) and in fact form a 
Markov chain. If this chain is ergodic [-as is the case for 2 > 0 and E r 0 
in the model (1.2)], the limit in (1.8) exists and is independent of the initial 
data. It then follows from (1.7) that for any invariant measure for our 
chain, i.e., a measure dr(x) such that for all measurable functions f(x) 

f dr(x)f(x)= E f dr(x)f(%(x)) (1.9) 

v(E) can be expressed in terms of an expectation with respect to this 
measure 

7(E) = f In Ixl dv~,E(x) (1.10) 

The quantities Markos introduces as "moments of the Lyapunov 
exponent" are essentially the logarithmic moments of this invariant 
measure, i.e., 

<7(E)'> " I  in" Ixl dr(x) 

and are not to be confused with ET(E)". In fact, 

flnnlx[dv(x)= lim -1 ~ ln" ~E(n+l) 
. . . .  n k=o IpE(n) 

and their divergence for n > 1 as E ~ 0 seem to indicate that a typical solu- 
tion of the initial value problem has large oscillations everywhere that, 
since 7(E) ~ 0, accumulate to less than expo~nentially fast growth. Thus, we 
must conclude that the Lyapunov exponent does vanish for almost every 
realization of the disorder. 

While this leaves the claim of ref. 13 as a possible answer, I do not see 
how this proves the existence of extended states. To answer this question, 
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more detailed information on the growth properties of the solutions is 
required. By going one step beyond the computations of ref. 13, I will show 
that for E = 0 the initial value problem has two solutions that behave for 
large n like 

~9~ (n) ~ exp( _+ Kn 1/2) (1.11 ) 

where K is a random variable with mean zero and variance of order 4. This 
leads to the conjecture that the wave function is localized even in the center 
of the band, but decaying away from the localization region only like an 
exponential of the square root of the distance. I have not been able, 
however, to prove this conjecture. This point certainly deserves further 
clarification. 

The remainder of this paper is organized as follows. In Section 2, I 
derive the equation for the invariant measure and some formulas relating 
it to the Lyapunov exponent and the density of states. I also derive the 
equations governing the perturbation expansion, both at special and non- 
special energies. In Section 3, I consider nonspecial energies and show that 
the perturbation expansion can be constructed to all orders. In Section 4, 
I do the same at the special energies E =  2 cos(re(p/q)),  with the exception 
of E =  0. I also show the appearence of anomalies in order q -  2. Both of 
these sections are largely adaptations of results from ref. 2. In Section 5, I 
study the neighborhood of the band center, where I extend the results of 
Markos to all orders of perturbation theory. Finally, in Section 6, I discuss 
the situation in models with both diagonal and off-diagonal disorder and 
present some discussions and conclusions. 

2. E Q U A T I O N S  FOR THE I N V A R I A N T  M E A S U R E  

The Schr6dinger equation associated with the Hamiltonian (1.2) reads 

~9E(n + 1) + ~9E(n -- 1) + 2v ,  + 1 t~E(n + 1) + )~vn~bE(n - 1) - E ~ e ( n  ) = 0 (2.1) 

Following ref. 8, I introduce the ratios 

~E(n) R (2.2) 
x , , - f l n ~ , - - ~ - l )  ~ 

where fin --= 1 + 2vn, and R denotes the compactified real line. 
The x,  satisfy the recursion relation 

E - - x ~  1 
X-+l = 2 (2.3) 

fin+ I 



650 Bovier 

The ( X n ,  / ~ n + l )  form a Markov process. The complex Lyapunov 
exponent is easily expressed in terms of these variables. We have 

1 
~(E)= lim - Z ln(flnx-) 

n ~ o o  n k =  0 

= l i m  - I n  x . +  l i m  - In ft. 
n --* o e  n k = 0 n ~ oc: l"l k = 0 

(2.4) 

The process defined through (2.3) is ergodic for 2 > 0  unless E =  0! 
[-And also if 2 = 0 ,  but E#2cos(n(rc(p/q)). If E = 0 ,  there exists an 
invariant set, {0, oo} |  { l+2supp( /~)} .  In this situation, Furstenberg's 
theorem (1'6) does not apply, and in particular we are not guaranteed the 
uniqueness of the invariant measure and the positivity of the Lyapunov 
exponent. For all E r  0, on the other hand, Furstenberg's theorem asserts 
that there is a unique invariant measure dv~,r,(X) and 

lim 1- ~ In x, = fR dv).,~(x)In x (2.5) 
n --* oO Fl k ~ 0 

Therefore, 

~(E) = fR dvze(x) In x + E in fl (2.6) 

and 

f 
~ 

7(E) = 9t~(E) = dv,~,E(x) In Ixl + E In fl (2.7) 
--oo 

and 2 

(.O 

N ( E ) =  ~](E)  = J-oo dv~,e(x) (2.8) 

Our problem is now to find the invariant measure dv~,e(x). It satisfies the 
equation 

_ _ X  - 1  

fdvze(x) f (x )=Efdv~,e(x) f (E-~7 ) (2.9) 

2 Relating the imaginary part of ~7(E) to the density of states employs the Sturm oscillation 
theorem. See, e.g., ref. 12. 
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for all measurable functions. We may try to seek an invariant measure that 
has a density, i.e., for which dva.e(x)=~zE(x ) dx. Equation (2.9) then 
implies that (~ze(X) must satisfy 

f12 1 
(2.10) 

which can be conveniently written in the form 

~.,E(x)= E [exp (21n fl d x ) ]  TE(~a,E(x) (2.11) 

where T E is defined as (2) 

1 

A solution of Eq. (2.10) is of course sought among the nonnegative func- 
tions in L~(R, dx). We recall from ref. 2 that for E = 2 cos(re(p/q)), with p, 
q relatively prime integers, 

T } = id 

and the spectrum of T E consists of the qth roots of unity. I refer to these 
energies as "special energies." For all other energies with - 2  < E < 2, TE 
has a simple eigenvalue one, and the rest of the spectrum is a continuous 
spectrum on the unit circle. 

Equation (2.11) is a convenient starting point for a perturbation 
theory in 2. We expand (formally) ~b;.,E in powers of 2, 

2n 

n = 0  

(2.13) 

Equation (2.12) then implies that the coefficients ~b~)(x) satisfy the infinite 
system of equations 

( )J (1--Te)cP~)(x)= ~ k ~--~exp 21n dx x Te~b~'-k~(x) 
k = 2  2 ~ 0  

= Ev k 2--~xx--r re~ ~ k)(x) (2.14) 
k = 2  r = 0  

One would like to solve the system of equations (2.14) recursively. This 
succeeds, as I show briefly in the next section, if and only if E is a nonspe- 
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cial energy, since in this case the kernel of (1 - Te)  is one dimensional. For  
energies in the neighborhoods of the special energies E =  2 cos(z p/q) we 
must derive the equations for the perturbation expansion from the q-fold 
iterated equation, i.e., from 

Bq, e O z e  = (~a,e (2.15) 

For  E = 2 cos(Tz p/q)  + 22e, we then obtain the equations 

with 

(2.16) 

: B q Ao,8 2,E0 +)o2e 
2=0 

= qk'~--0 Tw176  4 ~xxX dxx TE~ 

I will show that the operator Ao, ~ has a one-dimensional kernel and that 
Eq. (2.16) can be solved recursively, except when Eo = 0, and e = 0. In this 

~(O)(x latter case, the lowest order equation Ao, W e ,  ) = 0  does not have a 
normalizable solution. 

3. T H E  N O N S P E C I A L  ENERGIES 

For E = 2 cos r~e with e irrational, the unique solution of (2.14) can be 
constructed as in the random potential problem. (2) I briefly indicate how 
this is done, but refer to ref. 2 for details. It turns out that a solution can 
be constructed in the Hilbert spaces HE -- L2(R, (x 2 - Ex + 1) dx)  c 
LI(R, dx). We introduce the complete orthogonal set ~(Pe~m)m= --~ where 

and expand 

1 e2i,, cot-'( . . . .  t~)  (3.1) 
Pem(X) = x 2 - Ex  + 1 

(~(em)(x) = ~ ?~) (m)  Peru(x) (3.2) 
m= --~:~ 

A simple computation shows that the ~ ( m )  satisfy the system of equa- 
tions 

(1 -- e -'2~m~) q~)(m) 

= ~ Evk Iq t j''*tllA- "Iml*"~ ~'--iZ~Z~'~("--k)tt~Ve t~, (3.3) 
k=2 l=--oo r=0  
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where M is a matrix with elements 

Mmt=im[6m, t 1(COt n~-- 1) + ~Sm, l+ 1(cot rcc~ + 1 ) -  ~m.t 2 cot rcc~ ] (3.4) 

Equation (3.3) is completely analogous to the corresponding equation (3.7) 
in ref. 2. In particular, the matrix M is tridiagonal, like the matrix D in 
ref. 2. The same arguments as in Chapter III of ref. 2 show therefore that 
we have the following result. 

kemma 1. For E =  2 cos ~rc~ with ~ irrational, (3.3) has a unique 
normalized set of solutions. Moreover, 

= 6 . , o  

q~)(m) = 0 if [ml > n 

The ~b~)(x) may be continued to rational points c~ = p/q if n <'q. If n = q, 
the coefficient ~ ) ( q )  diverges at these energies. Moreover, from this 
divergence we may conclude that for some n ~< q -  2, the continuation of 
the r from the irrational to the rational point cannot give the correct 
solution, and that thus the correct ~b~)(x) are discontinuous at these special 
energies. 

It should be noted that, for generic e, the solutions of (3.3) develop a 
small-divisor problem, as (1--e  -2~m~) will become arbitrarily small. For 
sufficiently irrational cr this problem can be avoided, and one might hope 
that in these cases the perturbation expansion is Borel summable. (It is 
fairly easy to see that the coefficients have only factorial growth.) However, 
I have not been able to prove such a result. For ~'s closer to rationals, one 
should use the expansion developed in the next section. 

4. ANOMALIES AT E o ~ 0  

][ turn now to the special energies. Only the case with E =  0 will be 
substantially different from the random potential case, and its treatment is 
deferred to the next section. The other energies can be treated in complete 
analogy to the random potential model. I will only give a brief outline and 
the major results here, while referring to Chapter four of ref. 2 for details. 

I recall from ref. 2 the following key lemma: 

L e m m a  2. Let E 0 = 2  cos(Top/q), with p and q relatively prime 
integers. Let D (m 1) be a differential expression in d/dx with analytic coef- 
ficients of degree m - 1. If D ' -  1 satisfies 

x2T~ID(m- 1)TE ~ = D(m- 1) 
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and if m < q, then there exist constants Ck such that 

D ( m -  11 = rEo(x) ck -~x re~ 
k = l  

where r eo(X ) = x 2 - Eo x + 1. 

We may apply this lemma immediately to the operator Ao,~. It is 
obviously of the form Ao, , = (d /dx)  D ~ Since 

d d x2 
TE~176 TE~ = A~ T E-~ -~X TEo = dxx 

we see that D (1) satisfies the assumption of the lemma, and therefore, if 
q > 2 ,  

d d d 
A o . , = C l  ~xreo(X) - -~xreo(x )+c2(e- -2) - -~xrEo(X ) (4.1) 

with some constants cl, c2. It follows that ~b~)(x)= 1/reo(X) (up to the 
proper normalization factor) and that the system of equations (2.17) can be 
solved recursively in the space ~ugE0. Moreover, in exactly the same way as 
in ref. 2, one shows that for n ~< q - 3  the solutions so obtained coincide 
with the continuations of the solutions obtained in the previous section for 
nonspecial energies to Eo. The ( q - 2 ) t h  coefficient is, however, discon- 
tinuous at Eo. 

5. T H E  B A N D  C E N T E R  

I now come to the most interesting feature of this model, namely the 
behavior of the invariant measure near the band center. The operator Ao,~ 
is in this case not determined by Lemma 2, but one can easily compute it 
explicitly. One finds 

d )2 d 
Ao,~=8 ~x x + 2 e ~ x x ( l + x 2  ) (5.1) 

For e = 0, we see that the lowest order equation 

= 0 

has the two solutions 1/[x[ and In [xl/[x[, both of which are not integrable. 
(The operator Ao, o has in fact purely continuous spectrum.) This is of 
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course not  too surprising in view of the fact that  there is at least one 
invar iant  measure  that  is not  absolutely cont inuous,  namely  

1 

which is concent ra ted  on zero and infinity. This also happens  to be the 
only invar iant  measure,  since the complemen t  of the set {0, oo } is trans- 
ient. 

Fo r  e r 0, this p rob lem does not  yet appear ,  and we will solve our  
equat ions for ~ finite and extract  the singular behavior  as e--,  0. The 
general solution of Ao,~q~(x)= 0 is easily found as 

1 
~ ( X )  = C 1 - -  e (~/ . . . .  )/4 

Ixl 

I e(e/x ex)/4 I r 1 + c2 - _ e(~y ~/y)/4 dy (5.3) 
x J~(x) p 

The integrat ion constant  a ( x )  is choosen as 

a (x)  = [ - -  oo for x < O  
(5.4) lo for x > 0  

Obviously ,  this function is normal izable  only if c 1 = 0. I will compute  the 
no rm of the second term shortly. I put  thus 

~b~O)(x) =-1 e(~/ . . . .  )/4 I ~ _1 e(~y ~/y)/4 dy 
x :a(x) y 

(5.5) 

Notice  that  zero is a singular point  for our  differential opera tor ,  and with 
our  choice of  a ( x )  we have ma tched  solutions for x < 0 and x > 0 in such 
a way that  

Toq~~ = ~b~~ (5.6) 

as it should be. I t  will turn  out  to be useful to in t roduce new variables in 
the following way. Fo r  x > 0 we set t = In x and define 

f t  g~(O) (I)--X~-- (0)  ( X ) ~  e - (a /2)  s inh t ds e(e/2) s inh s 

- -oo  
(5.7) 
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For x < 0  we let t = l n  Ixl, and put f~~ Ixl ~b~~ Notice that by ( 5 . 6 )  

for x < 0 ,  

f~o)(t ) = g~O)( _ t) (5.8) 

In the same way we introduce g~)(t) and j~")(t). 
As a first exercise we will use these variables to compute the norm of 

~b~~ We have 

f0 II~~ a : dx ~~ + dx ~ ~  
- - o O  

f~ f ~ = 2 d t  e - ~/2)  ~ i . a ,  d s  e ~,/2) ~i,h ~ ( 5 . 9 )  
- -  o 0  o 0  

This integral can in fact be computed exactly and yields ~9) 

[]~b~~ 1 = �89  + U~(~/2)] ~ [In ~]2 (5.10) 

In view of later necessities, it is, however, more instructive to estimate the 
integral in (5.9) in the following way. We change variables once again to 
T =  e sinh t, S = e sinh s, so that our integral takes the form 

d T  e -  r/2 ~ r dS  e + S/2 f 2 
J_~ (e 2 + T~)I/2 J_~ (~ + S2) m 

fo~ dT f o  dT"e-7"/2 (5.11) 
= 2  _co (e2+ T2)l/2 [ e X + ( T _ ~ ) 2 ] l / 2  

The first T-integral converges since the denominator behaves like T 2 and 
picks up two contributions of order In e near T = 0 and near T = T. Thus, 

o~ d~  2e-  ~/2 
]kb~~ 1 ~ 2  Ilnl ell ~o 

( ~ +  

The convergence of the T integral is assured by the exponential damping 
term and its main contribution comes from the neighborhood of zero, 
where it picks up another factor of In lel. This coincides with the result of 
the exact computation. 

One can expect our perturbation expansion to describe correctly the 
singular behavior of the full solution only if the nature of the singularity in 
e is the same in all orders of perturbation theory. In particular, the norms 
of all the ~b~n)(x) should diverge with the same speed. This question has also 
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been raised by Markos. The following theorem gives a complete answer to 
this question. 

T h e o r e m  1. Let E=22e. Then, for all e # 0 ,  the system of equa- 
tions (2.16) has a unique [up to a constant multiple of ~b~~ which is to 
be determined by the normalization condition] set of finite solutions 
~b~n)(x) in L 1. Moreover, for all n, 

It~b~)(x)l[ 1 ~< c~ Ilnl ell 2 (5.12) 

with cn constants independent of e. 

ProoL The existence and uniqueness of a set of finite solutions to all 
orders of (2.16) can be shown very easily along the lines of the analogous 
proofs in ref. 2 or the previous section of this article. All it really requires 
is the fact that the kernel of A0,~ is one dimensional. What is, however, 
much less evident is to prove (5.12). I have not been able to find a simple 
argument for this, and my proof relies on a fairly explicit computation. 

To this end, I write (2.16) as explicitly as possible. Note that 

d 

rt/2~ l E ~ L e x p  2In x ~ T O = E  2; ax i = 0  2 = 0  

( ) l 2i-i( d ) (d )  i2i[ 
~,/21 1 Ev,_2, l- I 2-d-s ~dx] i! To (5.13) 

= ~ 2i i = 0  r ~ 0  

Equation (2.16) for E =  225 can thus be written as 

4_~x x _~xx +_~(x + x - i  ) ~n 21(x ) 

k=3 z=o i=o 2i j = 0  2 j  

• Ev z- 2iEv~ z- 2j 2i._~. 2j I. 
i! j! 

l-2i-l(d ) (d )  ik-t-2j-I 
x I-I 2 -~xX-r  g H 

r = O  p = O  

( - 2  d ~/ d 2~ j -~xx-p)~e-~xx  ) c~=-k)(x) (5.14) X 

It is convenient to work with the functions g~n)((.) t) and f~=!(t) intro- 

822/56/5-6-7 
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duced above. Both sets of functions are treated completely analogously, 
and we concentrate on the g's. From (5.14) we derive 

4 5 ~ + ~ c o s h t  g , - 2 ) ( 0  

k=3 ~ ( k ) , = o  ~ ( ~ ) E ~ ] ( l ) t ( k - O / 2 ] (  l ) i = o  2i 
j = 0  2 j  

x Ev'- 2'rv*-'- 2j 2iT" 2jr. 
i! j! 

t - 2 i - a (  2 d I - I  --r)( dgTe_,)ik-t-2J-'i-i 
r=O p=O 

d '~/ d ,'~J 
• - 2 ~ - p ) k e ~ e )  g~" k)(t) (5.15) 

Equation (2.15) is readily solved for g~')(t). The relevant solution is 

1 e -  (e/2) sinh e(e/2) sinh n 

* , 0 ( , )  g~,_2)(t)=4_~2) t f l  ds {k~__3(k) ~ k 

x E  2i E ,=o j=o 2j 

• Ev' - 2iEvk - ' 2j 2i ! 2j ! I d l - l ' - 2i 1( ! 7( ~s 1-I 2 __~s _ r ) ( ._~s e s) i 
r=O 

x I-[ - 2 ~ - p  e ~ e  s g~'-k)(s) (5.16) 
p=O 

Here I wrote [d/ds] 1 instead of an integral in anticipation of the fact that 
the differential operators following it start with a factor d/ds which will 
annihilateagainst it. 

Only the term with k = n in (5.16) is completely explicit, since g~~ 
is already computed. In the other terms we have to express the g~n-k)(t) on 
the right through (5.16) again and iterate this procedure until we are left 
with a sum of terms involving integrations and differential operators acting 
on g~~ only. This is obviously achieved after a finite number of itera- 
tions. We estimate the norms of the terms with k = n first. It will then 
become obvious that these estimates carry over to the other terms as well. 
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We have to estimate the norms of terms of the form 

e--(e/2)sinht ds e(~/2)sinhs -~s H -~s - r 
--o0 r ~ O  

x e dss (sinh s + cosh s) 

..,_1( ]j 
x 1-I - 2 ~ - p  e ~ (sinh s + cosh s) 

p = O  

fs x e  (~/2) sinh s ds, e(~/2)sinhs' (5.17) 
- - o o  

The ditferential operator appearing in this expression can be further 
expanded. Some constant terms appear in the expansion (i.e., no derivative 
and no sinh or cosh), but in (5.16) those appear in pairs with opposite 
signs and thus cancel. All other terms involve a product of powers of the 
operators d/ds, e(d/ds) sinh s, and e(d/ds)cosh s, with possibly one extra 
factor of e sinh s or e cosh s to the left. We need therefore to study the 
action of those operators on g~~ 

We find it convenient to change variables once more to 

T=- e sinh t, S -  e sinh s, etc. 

Note that 

m ~  dt (e2 nt - T2)U2 (5.18) 

We have to estimate integrals of the form 

f~  dT  e -  T/2 f r dS eS/2 
I =  - ~  (esT~-T~-f)l/2 ~ (82 + $2)I/2 F(S)  (5.19) 

where', F(S)  are functions of the form 

F(S) = # I-[ D("')h(S) (5.20) 
i = 1  

with 

h( S) = e - s/2 ~ j s  dS' e S ' / 2  

0o (~2 + S,2)1/2 
d S e  ~/2 (5.21) fo [ d +  ( s -  g)2] '/2 
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and the D (~) are either of the operators 

(/~2 @ $2)1/2 d d (~ + $2) 1/2 --~ S, o r  
d $2)1/2 (d + 32) 1/2 -~ (d + 

and # stands for either 1, S, or (/~2..~_ 32)1/2. 
I first give some estimates on h(S). Notice that h(S) acquires a con- 

tribution that is singular in e in the integral where S ~  S. It will turn out 
to be useful to single out this singular part and to split h(S) into two 
pieces, 

h( S) = h(r)( s)  .-I- h(s)( s)  (5.22) 

with 

h(r)(s) = f o  dS e ~/2 
[/32 "[- (S-- ~)2-] 1/2 ~s(S) (5.23) 

d,~ e ~/2 ~ (5.24) 
h~'(s)= f o [e2+ ( S _  ~)2],/2;~s(3) 

The cutoff function Zs(5;) may be chosen as a C (~ function with the 
property that 

t i  for ]sI < 1 
Zs(~)=  for I S - S t < I S I / 2  

for I S - S [  >3S /4  and [SL/> 1 

(5.25) 

Naturally, ~ s ( S ) -  1 -  Zs(5;). We also define F~r)(s) and F~)(S) through 
(5.20) with h(S) replaced by h~r)(s) and h(s)(S), respectively. 

Note now that h ~) is an infinitely differentiable function with all its 
derivatives bounded uniformly in e. Moreover, h(r)(S) decays like 1/S, i.e., 
more precisely, there is a constant C independent of 8 such that 

ISh(r)(S)[ <~ C (5.26) 

We must show that h (r) retains this property after repeated applications of 
the operators D (=). This will follow from the following lemma. 

Lemma 3. Let f (x )~C~ 1]) and satisfy I(1/x)f(x)l <c. Put 

~x d 1 f(x) dl(x) = x f (x)  and d2(x) = x ~xx x 
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Then, dl(x) and d2(x) are in COO([ - 1, 1]) and there are constants cl and 
c2 such that 

2~dl,2(x) ~c1,2 

for all x ~ [ -  1, 13. 

The proof of this lemma employs Taylor's formula with remainder and 
is left as an exercise. 

The application to our case is evident. Considering h (r) as a function 
of the variable x = 1/S and remembering that it vanishes for ]SI < 1 by the 
definition of )?s(S), we see that it satisfies the assumptions of Lemma 3. 
Moreover, x d/dx=Sd/dS,  and the distinction between S and (e2+ $2) 1/2 
is insignificant. We obtain therefore that 

[F(~(S)[ ~< C (5.27) 

for some constant C independent of e. The corresponding contribution to 
the integral I is thus bounded by a constant times Iln [~1 [ 2, as desired. 

I turn now to h ('). It is easily seen to satisfy the bound 

Ih(')(S)l ~Ce  -s/5 Iln le[ I z I -S> -1-1 (5.28) 

Now notice that 

d 1 d 1 
(5.29) 

dS [g2nc (S-- g)2"] 1/2 dS ['g2 + (S_  ~)2-] 1/2 

by means of which we get, performing an integration by parts, that 

dh(~) f ?  d ' e - ' / 2  [ 1 - d - d 
= [~2 --~(S-- g---~2 ] 1/2 -- 2 zs(S) "Aft ~ Zs(S) -~- ~s(S)] (5.30) 

This satisfies virtually the same bounds as h ('~ itself. Using the same 
strategy for the operators repeatedly, we see that F (s) can be expressed as 
a sum of terms, all of which are bounded by terms like 

(g2 31-82)1/2 Ce -s/5 [In 1~1 I z [ s >  - 1 ]  

with k ~> 0 and constants C independent of e. The important point to notice 
is that there is at least one factor of (e2+ $2) '/2 and that the function has 
exponential decay in S. Inserted in (5.19), the exponential decay will 
guarantee the convergence of the Tintegral, and the (~2+ $2)1/2 factor 
removes the e singularity in the S integral. Thus, these two integrals 
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produce only an [ln [5[ [ factor that combines with the In 5 in the bound on 
F (s) to give again a constant times [In [el 12 bound for this contribution to 
I. This is what I wanted to show. 

This concludes the proof for the terms with k = n in (5.16). The general 
case is treated in the same way. The structure of the terms to be estimated 
is 

e sinhf5sinhDe-sinhfesinhDe-Sinh''.De-Sinhfe~inh 

with the D's representing differential operators of the same type as before. 
Thus, the same structure as in the previous case is repeated several times, 
and the proof is obtained by induction in a fairly obvious way, using in 
each step the same estimates as just done. I will not present the details here. 
The final result is that 

Ilg~")(x)lla ~ c ,  Iln 5[ 2 

The same procedure applied to the functions f~")(x) shows that they satisfy 
the same bounds, which completes the proof of the theorem. 

It is natural to ask whether the approximate invariant measures we 
compute in perturbation theory converge to some measure as 5 approaches 
zero. The answer to this question is in fact easily derived as a corollary of 
the theorem. We have the following result. 

C o r o l l a r y  I. Let 

57" 0 k (x) , k/k ! 
1152" ~b~k)(x)2k/k! II1 

dx 

Then, for all 2, as e - o 0  the measure dv~n)(x) converges weakly to the 
measure �89 + (1/x 2) 6(1/x)] dx. 

I leave the proof of this corollary to the reader. 
I now turn to the computation of the Lyapunov exponent and of the 

density of states. Starting from (2.7), one can express 7(E) in terms of the 
t variables as 

7(E)= II0~a,g(x)ll~ o~ dxln(-x)(~z,e(x)+ dxlnxOze(x) + E l n f l  

= ~-oo t(ga,~(t) --f~,~(t)) dt + E In fl (5.31) 
i[ga~(t)lll + IIf~,At)ll 1 
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Similarly, from (2.8) the density of states is given by 

N(E) = IIf~,~(t)ll ~ (5.32) 
[[g~.,~(t)ll a + IIf~.,~(t)ll i 

I will (formally) expand the Lyapunov exponent and the density of states 
in powers of 2, i.e., for E =  522, I let 

? (E )=  ~ )~'~(')(5) 
. = 0  

N(E) = ~ + ~ 2"N(')(e) 
. = 2  

I will prove the following theorem: 

(5.33) 

Theorem 2. The Lyapunov exponent vanishes to all orders in 
perturbation theory as E--* 0, while the density of states approaches the 
value 1/2. More precisely, for all n there exist constants c, and d, such that, 
up to corrections vanishing faster with e, 

7(,)(e ) = c, (5.34) 
Iln 1511 

and for n >t 2, 

N(.)(5 ) = d.  
Iln lel 12 sign 5 (5.35) 

As a consequence of (5.35), the differentiated density of states 

1 d 
n( E) - -~ -~e N(e ) 

diverges at the band center like ~--1 Iln el--3, t o  all orders of perturbation 
theory. This extends the earlier results of Dyson (5) and Markos. (9) 

ProoL Let us turn first to the density of states. Since f and g are 
positive functions, we can write (5.32) as 

N(E) =~-~ S~~ [gz~(t)-f~"~(t)] dt 
1 ~ ) . ~ +  ~ - (5.36) 

The integral over the difference between f and g can now be expanded in 
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powers of 2, and the coefficients can be expressed using (2.14). [Note that 
the integral over f(t) equals the integral over f ( -  t).] That is, we use that 

g~n)(t)-- f~n)(--t)= ~ ( ; ) [ ~ ] ( k ) 2 i ' E v k - 2 '  
k = 2  i = O  2i 

x I-I 2 7 t - r  a l e '  f ("-k)(- t )  
r = 0 dt J~ " 

(5.37) 

Notice that the right-hand side is a total derivative and that therefore the 
integral is just given by boundary terms at plus and minus infinity. Since 
all the f(~")(t) decay like 1/(e cosh t) at infinity [this is checked easily using 
l'H6pital's rule for f~~ and then proven by induction in a similar 
manner as in the proof of Theorem 1], a moment's reflection shows 
that these boundary terms are in fact of the order of a constant, i.e., 
independent of e. Therefore, to any order in 2, 

1 a 
N(E) 

= 2 +  [In ~l 2 
(5.38) 

Differentiating this formula with respect to E, we obtain that the differen- 
tiated density of states n(E) diverges to any order in 2 like 

b 
n(E) = [~7 in 3 e-----~ (5.39) 

We now turn to the Lyapunov exponent. 
We expand the ~bx,E(x ) in the numerator of (5.31) in powers of 2 and 

use (2.12). The term proportional to 2" is then given by 

k=0 i=o 2i t_~!Ev 2i 

x dtt ]-I ~ - r  e ~ e  t f~"-k)(--t) (5.40) 
- - 0 0  r ~ O  

In the last integral we may perform a partial integration to obtain 3 

- f  dt ~ 1-[ 2 7 i r ) t e a e  ) f : " -k ' ( - t )  
- - o 0  r = O  . 

= - --e' f["-k)(--t) (5.41) dt 1-[ ~ - r  ee' e dt 
- - o 0  r ~ O  

3 Apart from a boundary term that is nonsingular in e and may thus be ignored. 
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Now notice that just as in the proof of Theorem 1, we can show that all 
integrals of the form 

_~dt ~ 5e' 5~e' f~" ~)(--t) 

and j > O  or i = 0  and j > l  are bounded by const-lnle].  with i >  0 
Therefore, 

fSdx In x(1 - To) r 

. = 0 ~  Ev~2 dt l-I (-r)f(~'-k)(-t)+o(lne) 
k = O  - - co  r = l  

= ,=o ~ Evk(k- 1)! ( -  1) ~ I I r  1 + o(ln e) 
k = 0  

2" ~ (--2)kEvk+o(lne) = (n) 
o ~ I1~ (x)l[1 k 

n =  k = l  

= -IIq~.,E(x)ll i E In fl + o(ln 5) (5.42) 

This shows that indeed 

7(E) = 0 +  O(ln -~ 151) 

to all orders of perturbation theory, as claimed. 
Before closing this section, I point out that the point E = 0  can be 

analyzed in great detail for all 2. This has been exploited partially in ref. 13. 
Note that the Schr6dinger equation takes the form 

f ln + l ffJ ( n -'i- l ) + f ln ffJ ( H - -  1)=0 

so that the even and odd sublattices decouple. Two linearly independent 
solutions are obtained by choosing initial conditions 

4,(+)(o) = o, ~ (+) (1 )=1  

and 

~(-)(o) = 1, ~ ( - ) ( ] ) = o  

Then O (+) vanishes on the even sublattice and if(-) on the odd one, while 

0(+)(2n + 1) = l~I 
fl(2k) 

k = l  fl(Zk+ 1) (5.43) 
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and 

Thus 

With 

we have 

and 

~-)(2n) = I~I fl(2k- 1) 
k =1 fl-(-Zk-) 

(5.44) 

lnl~k~+)(2n+l)[ = k [ - ln l /3 (2k) l - ln l /3 (2k+l ) l ]  (5.45) 
k = l  

In 1O(-)(2n)[ = ~ [In 1fl(2k- 1)1-  in I/~(2k)l ] (5.46) 
k = l  

y(k) = In 1fl(2k)l - I n  I/?(2k + 1) (5.47) 

In [~b(+)(2n+ 1)1 = ~ 7(k) (5.48) 
k = l  

lnl~b ~ ) ( 2 n + l ) l = - ~  7 ( k ) + f l ( 2 n + l ) - f l ( 0 )  (5.49) 
k=l 

The 7(k) are i.i.d, random variables with mean zero variance a of 
order 2. Thus, by the central limit theorem, 

_ 1 ~ 7(k) 
~i~n N/F/  k = 1 

converges to a Gaussian random variable ~b with mean zero and variance 
a. Of course, 

1 
7(k) ~ 0, a.s. 

nk=l 

and the Lyapunov exponent is thus zero, as predicted by perturbation 
theory. [I leave it to the reader to verify the vanishing of the Lyapunov 
exponent directly from the definition (1.5).] 

The two solutions thus have the asymptotic behavior 

and 

I~k~+)(2n + 1)1 ~ exp (+n l&b)  

1~9 ~- )(2n)] ~ exp(--nl/Z~b) 
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where ~b does depend on the realization of the disorder. Typically, there- 
fore, as long as 2 ~ 0, the solutions grow faster than any power either in the 
forward or backward direction, and therefore cannot be generalized 
eigenstates, which exhibit at most algebraic growth. Since for E ~ 0 we even 
have a positive Lyapunov exponent, we expect that the spectrum of H is 
still pure point, with all eigenfunctions localized, although with divergent 
localization length at zero energy. It would be very interesting to prove this 
conjecture rigorously. 

6. M IXED DISORDER 

It is a natural question to ask what happens in a model where both 
diagonal and off-diagonal disorder is present, i.e., for a Hamilonian of the 
form 

Hmi x = - A  + ~ V-'I- 2J (6.1) 

with V and J defined as in Section 1, and the random variables Vi inde- 
pendent of the vi. The corresponding Schr6dinger equation is then 

fln+l~e(n+l)-fln~e(n-1)+(6vn-E)~e(n)=O (6.2) 

With xn defined as in (2.2), we get from (6.2) the recursion relation 

= (6.3) 

and for the density of the corresponding invariant measure we derive the 
equation 

#2 
Cz~(x)=EvE'[(E_6V__fl2x)2~Z*('E - 1 

=EvEv[exp(2lnfl d x ) e x p ( f v d ) ]  Teq~z~(x) (6.4) 

For E r  0, nothing very interesting happens, and I consider only the 
case E =  0. I want to take both 2 and 6 small of the same order and put 

= p2. One may than expand ~bz,6(x) in powers of 2 and obtain for the 
expansion coefficients the systems of equations 

(~)AO, pq~(on-2'(X) ~ n~3k 
where now 

Ao, p= 8 xdx+ (1 + X4) ~XX + "~'- X3 (6.6) 
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To lowest order this gives 

1 
~(P0)(X) = [-X 2 "~ p/8(1 @ X4)] 1/2 (6.7) 

which is normalizable for finite p, and whose norm diverges like ]In p] as 
p goes to zero. One might repeat all the analysis of the previous section for 
this case now, and exhibit the singular behavior of the density of states and 
the Lyapunov exponent in all orders of perturbation theory. I will not, 
however, go any further with this. My main point is just the observation 
that any amount of added diagonal disorder will remove the singular 
behavior at the band center, and will in particular restbre exponential 
localization. This fact was already noted in ref. 13. 

To conclude, I summarize the results as follows. Using the invariant 
measure approach, it is possible to construct for one-dimensional 
Schr6dinger operators a perturbation expansion with finite coefficients to 
all orders. From those it is possible to investigate in detail the singular 
behavior of the density of states and the Lyapunov exponents near special 
energies, in particular the band center. The problem that is still open is to 
reconstruct from the formal perturbation expansions the actual solutions. 
The least one would like to prove is that the perturbation theory is 
asymptotic; the best one might hope for is to show Borel summability. 

NOTE A D D E D  IN PROOF 

Recently, M. Campanino and A. Klein (U. C. Irvine, preprint) proved 
the asymptotic nature of the improved perturbation expansion in the 
random potential model of ref. 2. 
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